skip to main content


Search for: All records

Creators/Authors contains: "Upham, Nathan S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 28, 2024
  2. null (Ed.)
    Preventing extinctions requires understanding macroecological patterns of vulnerability or persistence. However, correlates of risk can be nonlinear, within-species risk varies geographically, and current-day threats cannot reveal drivers of past losses. We investigated factors that regulated survival or extinction in Caribbean mammals, which have experienced the globally highest level of human-caused postglacial mammalian extinctions, and included all extinct and extant Holocene island populations of non-volant species (219 survivals or extinctions across 118 islands). Extinction selectivity shows a statistically detectable and complex body mass effect, with survival probability decreasing for both mass extremes, indicating that intermediate-sized species have been more resilient. A strong interaction between mass and age of first human arrival provides quantitative evidence of larger mammals going extinct on the earliest islands colonized, revealing an extinction filter caused by past human activities. Survival probability increases on islands with lower mean elevation (mostly small cays acting as offshore refugia) and decreases with more frequent hurricanes, highlighting the risk of extreme weather events and rising sea levels to surviving species on low-lying cays. These findings demonstrate the interplay between intrinsic biology, regional ecology and specific local threats, providing insights for understanding drivers of biodiversity loss across island systems and fragmented habitats worldwide. 
    more » « less
  3. Abstract

    The Tree of Life will be irrevocably reshaped as anthropogenic extinctions continue to unfold. Theory suggests that lineage evolutionary dynamics, such as age since origination, historical extinction filters and speciation rates, have influenced ancient extinction patterns – but whether these factors also contribute to modern extinction risk is largely unknown. We examine evolutionary legacies in contemporary extinction risk for over 4000 genera, representing ~30,000 species, from the major tetrapod groups: amphibians, birds, turtles and crocodiles, squamate reptiles and mammals. We find consistent support for the hypothesis that extinction risk is elevated in lineages with higher recent speciation rates. We subsequently test, and find modest support for, a primary mechanism driving this pattern: that rapidly diversifying clades predominantly comprise range‐restricted, and extinction‐prone, species. These evolutionary patterns in current imperilment may have important consequences for how we manage the erosion of biological diversity across the Tree of Life.

     
    more » « less